Problem:
On a horizontal number line, we have gas stations at positions stations[0], stations[1], ..., stations[N-1]
, where N = stations.length
.
Now, we add K
more gas stations so that D, the maximum distance between adjacent gas stations, is minimized.
Return the smallest possible value of D.
Example:
Input: stations = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], K = 9Output: 0.500000
Note:
stations.length
will be an integer in range[10, 2000]
.stations[i]
will be an integer in range[0, 10^8]
.K
will be an integer in range[1, 10^6]
.- Answers within
10^-6
of the true value will be accepted as correct.
Solution:
这道题是用了一种非常规的Binary Search解法。最开始我想用一种贪心算法,每次找出间隔最大的两站然后做二分,但这个思路是不对的,比如1,7,K等于2时,如果做二分的话会在4,2.5的位置依次放两站,其结果为3,而实际上只需要在3,5依次放两站其结果为2。因此这个算法不正确。答案用的是一种非常巧妙的二分搜索,二分搜索的是当最大间距为pivot时,需要放置的station的数量。如果需要放置的数量大于K,说明pivot值过小,需要在pivot和right之间继续寻找这个最大间距,否则在left和pivot中二分查找。最后得到的结果就是在放置K个station时最小化的最大间距。这道题和我们的常规想法不同,平时对于一般的问题,我们都是根据已知条件去计算这个结果,而这道题算是逆向思维,它先假设一个结果然后去判断其是否满足条件。这也是这道题评为hard的原因吧。
Code:
1 class Solution { 2 public: 3 double minmaxGasDist(vector & stations, int K) { 4 double left = 0; 5 double right = stations.back()-stations[0]; 6 while(right-left > 1e-6) { 7 double pivot = left+(right-left)/2; 8 int count = 0; 9 for(int i = 1;i != stations.size();++i){10 count += (stations[i]-stations[i-1])/pivot;11 }12 if(count <= K)13 right = pivot;14 else15 left = pivot;16 }17 return left;18 }19 };